Eigenvalues of Products of Unitary Matrices and Quantum Schubert Calculus

نویسندگان

  • S. AGNIHOTRI
  • C. WOODWARD
چکیده

We describe the inequalities on the possible eigenvalues of products of unitary matrices in terms of quantum Schubert calculus. Related problems are the existence of flat connections on the punctured two-sphere with prescribed holonomies, and the decomposition of fusion product of representations of SU(n), in the large level limit. In the second part of the paper we investigate how various aspects of the problem (symmetry, factorization) relate to properties of the Gromov-Witten invariants.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

m at h . A G ] 2 A ug 1 99 9 EIGENVALUES , INVARIANT FACTORS , HIGHEST WEIGHTS , AND SCHUBERT CALCULUS

We describe recent work of Klyachko, Totaro, Knutson, and Tao, that characterizes eigenvalues of sums of Hermitian matrices, and decomposition of tensor products of representations of GLn(C). We explain related applications to invariant factors of products of matrices, intersections in Grassmann varieties, and singular values of sums and products of arbitrary matrices.

متن کامل

J an 2 00 0 EIGENVALUES , INVARIANT FACTORS , HIGHEST WEIGHTS , AND SCHUBERT CALCULUS

We describe recent work of Klyachko, Totaro, Knutson, and Tao, that characterizes eigenvalues of sums of Hermitian matrices, and decomposition of tensor products of representations of GLn(C). We explain related applications to invariant factors of products of matrices, intersections in Grassmann varieties, and singular values of sums and products of arbitrary matrices.

متن کامل

Eigenvalues and Schubert Calculus

We describe recent work of Klyachko, Totaro, Knutson, and Tao, that characterizes eigenvalues of sums of Hermitian matrices, and decomposition of tensor products of representations of GLn(C). We explain related applications to invariant factors of products of matrices, intersections in Grassmann varieties, and singular values of sums and products of arbitrary matrices.

متن کامل

Properties of matrices with numerical ranges in a sector

Let $(A)$ be a complex $(ntimes n)$ matrix and assume that the numerical range of $(A)$ lies in the set of a sector of half angle $(alpha)$ denoted by $(S_{alpha})$. We prove the numerical ranges of the conjugate, inverse and Schur complement of any order of $(A)$ are in the same $(S_{alpha})$.The eigenvalues of some kinds of matrix product and numerical ranges of hadmard product, star-congruen...

متن کامل

A Universal Quantum Circuit Scheme For Finding Complex Eigenvalues of Non-unitary Matrices

We present a general quantum circuit design for finding eigenvalues of non-unitary matrices on quantum computers using the iterative phase estimation algorithm. In addition, we show how the method can be used for the simulation of resonance states for quantum systems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998